Im August 2016 ging in Senftenberg auf einer ehemaligen Deponie die bislang größte thermische Solaranlage Deutschlands nach etwa fünfmonatiger Bauzeit in Betrieb. Mit 8.300 m² Kollektorfläche ist sie zugleich die weltweit größte Solaranlage mit Vakuumröhrenkollektoren und die erste Megawattanlage, die in Deutschland in ein klassisches städtisches Fernwärmenetz einspeist.
- Seite 1
- Seite 2
MW-Solarthermie-Anlage Senftenberg
Ergebnisse des ersten Betriebsjahres
Dienstag, 03.07.2018
Solarthermie zur Fernwärmeunterstützung ist ein zunehmend aktuelles Thema für viele Netzbetreiber, seit KWK-Strom aufgrund der anwachsenden PV-Stromanteile im Sommer immer unrentabler wird.
Das Fernwärmenetz der Stadtwerke Senftenberg hat eine Gesamtlänge von rund 33 km und bei einem Anschlusswert von rund 50 MW einen jährlichen Wärmebedarf von etwa 100 GWh sowie eine Sommergrundlast von ca. 3,8 MW. Die Solaranlage hat eine Peakleistung von ca. 4,5 MW und deckt mit maximal 4 GWh im Jahr ca. 4 Prozent des Jahresbedarfs. Im Sommer erbringt sie tagsüber knapp 20 Prozent Überschuss und versorgt dann das Netz ganz allein. Aufgrund der Kapazität des Netzes braucht sie trotz der Überschüsse von bis zu 5 MWh pro Tag keinen Speicher.
Die mangelnde Verfügbarkeit geeigneter Flächen ist der Solarthermieanwendung größtes Hemmnis. Abb. 2 zeigt, dass die Solaranlage jedoch weniger als 1/1000 des Senftenberger Versorgungsgebietes beansprucht.
Die Solaranlage wurde dezentral über eine Ringleitung angebunden, aus deren Mitte heraus sie in beide Richtungen einspeisen kann, und so dimensioniert, dass sie an normalen Sommertagen das gesamte Wärmenetz beliefern kann, obwohl das Kollektorfeld vom Heizwerk weit entfernt liegt. Damit das Netz mit seinen mehr als 2.000 m³ Inhalt als Puffer dienen kann, wurde am Heizwerk eine optionale "Kurzschlussverbindung" hergestellt, so dass es von der Solaranlage auch "rückwärts" betrieben werden kann. In der Regel erfolgt die Einspeisung der Solarwärme wie im Heizwerk in den Vorlauf mit jahreszeitlich gleitenden Temperaturen zwischen 85 und 105 °C. Bei schwächerer Einstrahlung, vor allem morgens beim Anfahren und abends zur "Resternte", schaltet die Solaranlage auf Rücklauftemperaturanhebung um.
Am 15. August 2016 wurde das Kollektorfeld von den Solarpumpen mit Wasser gefüllt. Innerhalb von 10 Minuten stellte sich der vorausberechnete maximale Volumenstrom von 220 m³/h ein und das 170 m lange und 120 m breite Kollektorfeld mit ca. 13 m³ Inhalt war frei von Luftblasen. Dies erfolgte nachts, weil die Kollektoren bei der Sonneneinstrahlung am Tage sofort Dampf bilden würden.
Vom 16. bis 18. August wurde die Anlage getestet. Unter Aufsicht eines Sicherheitsbeauftragten wurde eine thermische Stagnation bei wechselhaftem Wetter herbeigeführt und eine bei voller Einstrahlung von über 1.000 W/m². Die thermische Stagnation tritt dann ein, wenn die Wärme nicht abgenommen wird und das Kollektorfeld siedet, bis es leer ist. Die offizielle Wärmemengenzählung im automatischen Betrieb begann am 19. August 2016.
Abb. 3 zeigt die Monatsergebnisse des ersten Betriebsjahres.
In den ersten zwölf Monaten speiste die Anlage mit insgesamt 4,1 GWh mehr Wärme ins FW-Netz ein, als ihr maximal zugetraut wurde. Im Durchschnitt werden 3,8 GWh pro Jahr erwartet. Die Ertragsgarantie wurde damit bereits sechs Wochen vor Ablauf des ersten Betriebsjahres erfüllt. Das Solarangebot lag im Oktober und im April deutlich hinter dem Durchschnitt, im Juni und im August war es hingegen besser. Hierbei wurden die Augusttage von 2016 nach der Inbetriebnahme und die von 2017 bis zum Ablauf des ersten Betriebsjahres betrachtet.
Die Solaranlage erzielte einen Jahresnutzungsgrad von 42,3 Prozent, das ist das Verhältnis aus der ins Netz einge-speisten Wärmemenge zur Einstrahlungssumme. Abb. 4 zeigt, wie der Gesamtertrag (rot) ab Mitte September immer langsamer wuchs, wie Tagesertrag (blau) und Tagesnutzungsgrad (grün) im Winter nachließen und wie bis Mitte September und ab Mitte April Tagesnutzungsgrade von über 50 Prozent erzielt wurden. Das ist das 3- bis 4-Fache von dem, was z. B. Photovoltaik aktuell leisten kann.
Abb. 5 zeigt die Tagesnutzungsgrade (rote Punkte und linke y-Achse) als Funktion der Tageseinstrahlung und die entsprechenden Tagesnetzerträge (blaue Punkte und rechte y-Achse).
Der Ertrag stellt sich proportional zur Einstrahlung ein, der Tagesnutzungsgrad nimmt hingegen bei schlechtem Wetter überproportional ab. Der Break-even-Point, ab dem die Anlage überhaupt etwas bringt, liegt etwa bei 1 kWh/m² Tageseinstrahlung. Um täglich mindestens 10 MWh ins Netz einspeisen zu können, was im Jahresmittel von der Anlage erwartet wird, sind Tageseinstrahlungen von mindestens 3 kWh/m² notwendig.
Nach einem sonnigen Herbst 2016 folgten ab Oktober ein besonders trübes, nebliges und regnerisches Jahresende bzw. viele Tage mit geringerer Tageseinstrahlung. Wenn die Sonne so flach steht, dass die für Sommerbetrieb optimal geneigten Kollektoren sie kaum noch "sehen" können, kommen diese an ihre Grenzen. Dies ist aber gerade auch jene Zeit, in der zum Heizen die meiste Energie gebraucht wird. Je nach Verbrauchsprofil kann Sonnenenergie deshalb ohne Energiespeicher prozentual nur kleine Beiträge zur Gesamtversorgung leisten.
Die Anlage in Senftenberg ist extra so ausgerichtet und ausgelegt, dass sie ohne Speichertank und damit zu geringen Wärmegestehungskosten im Sommer ihren Beitrag leistet, wobei das Netz als Speicher genutzt wird. Mit einem Tagesspeicher von 20.000 m³ (das entspricht dem Bedarf eines Wintertages) könnte ein zehnmal größeres Kollektorfeld in Senftenberg das gesamte Sommerhalbjahr und ca. 30 Prozent des Jahresbedarfs abdecken. Hingegen brächte ein Wochenspeicher von 140.000 m³ kaum weitere vier Prozent.
Die Speicherung von Heizwärme über ein oder zwei Tage ist technisch kein Problem, erfordert jedoch einen entsprechenden Standort und verursacht Zusatzkosten. Wollte man weit mehr als die Hälfte des Jahresbedarfs solar decken, müsste die saisonale Verschiebung zwischen dem Bedarf von Herbst bis Winter und der Einstrahlung in Frühjahr und Sommer mit viel größeren Speichern ausgeglichen werden, was technisch möglich, aber relativ teuer und platzaufwändig wäre.
In der zukünftigen Entwicklung kann Saisonalspeicherung einmal nicht nur notwendig, sondern auch wirtschaftlich sein. Solange jedoch noch nicht einmal 0,1 Prozent des mit Solarwärme versorgbaren Wärmebedarfs auch mit Solarthermie versorgt wird, erscheinen Saisonalspeicherprojekte heute realitätsfern und nicht zeitgemäß. Die technischen Herausforderungen hierzu sind nach zahlreichen, vor allem deutschen und dänischen Pilotanlagen bereits beherrschbar, aber deren Solarnutzungsgrad ist viel geringer als in Senftenberg und die Lücke zum heutigen Wärmepreis kann noch nicht sinnvoll überbrückt werden.
Sie haben eine Frage zu diesem Artikel? Dann stellen Sie der Redaktion hier Ihre Fachfrage!